22=1/2(600)(v)^2

Simple and best practice solution for 22=1/2(600)(v)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 22=1/2(600)(v)^2 equation:



22=1/2(600)(v)^2
We move all terms to the left:
22-(1/2(600)(v)^2)=0
Domain of the equation: 2600v^2)!=0
v!=0/1
v!=0
v∈R
We get rid of parentheses
-1/2600v^2+22=0
We multiply all the terms by the denominator
22*2600v^2-1=0
Wy multiply elements
57200v^2-1=0
a = 57200; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·57200·(-1)
Δ = 228800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{228800}=\sqrt{1600*143}=\sqrt{1600}*\sqrt{143}=40\sqrt{143}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{143}}{2*57200}=\frac{0-40\sqrt{143}}{114400} =-\frac{40\sqrt{143}}{114400} =-\frac{\sqrt{143}}{2860} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{143}}{2*57200}=\frac{0+40\sqrt{143}}{114400} =\frac{40\sqrt{143}}{114400} =\frac{\sqrt{143}}{2860} $

See similar equations:

| -5+5x=9+7x | | x/3−4=−29 | | .15–x=9 | | -2(3x=3)=8-5(4-2x) | | –19.6=4n | | a^+7a-9=-3+6a | | 19.57=19+x/100 | | 2/7x+1/7=-5/7 | | 2x+3=6×+17 | | (4y+1)+(4y+1)+(3y+3)+(3y+3)=78 | | (4y+1)+(4y+1)+(3y+4)+(3y+4)=78 | | 2+x-6=28 | | x/54+x/3=7/2 | | 0.80x-0.30(20+x)=1.45(20 | | x-9=x-53 | | 2(3x+1)=x+22​ | | 2x+5+x+2.5=90 | | 10k-16=5(2k+4) | | 2x+13=5x- | | 2(2x-2)=3(2x+2) | | 70=3x+x | | 6.12=3.4m | | G(t)=3t^2-4t+5 | | 4.8x=2.4x+3 | | 2(x+3)=−2(3+x) | | -5(2x-5)=2(3x-1) | | 7x-1+2x+1=180 | | 5/2x−7=41 | | 2y-3(y-1)=8-2(y-) | | -3x12=34 | | F(-4)=4x+9 | | e=10*2/2+3 |

Equations solver categories